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Abstract: 

One of the most frequent gynaecological malignancies in the 

world and one of the main causes of cancer-based female 

death is ovarian cancer. About 3 out of 4 (72.4 percent) 

women with OC survive for at least one year following 

diagnosis for all forms of ovarian cancer. Five years after 

diagnosis, almost half (46.2 per cent) of women with OC are 
still living. Ovarian epithelial malignancies are mostly 

imported from the endometrial or fallopian tube epithelium. 

Ovarian cancer therapy is difficult because of a frequent 

recurrence of diseases and further difficult owing to 

chemical resistance. Cancer stem cells (CSCs) continue to 

get interest since they are known to withstand chemical 

treatment, to renovate themselves, and to re-populate the 

bulk cell tumour. CSCs also seem to respond quickly to 

environmental, immunological and pharmacological 

indications. The flexibility and capacity to inactivate or 

activate signaling pathways that support their lifespan has 
been and remains the difficulty in creating effective CSC-

targeted treatments. The identification and comprehension of 

distinct ovarian CSC markers and the pathways may provide 

novel therapeutic possibilities that provide different therapy 

adjuvant choices. Here we will examine the characterization 

of ovarian CSC in OC and stem, isolation and enhancement 

of CSC and OCSCs signals and targeted therapies. 
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Introduction 

More than 19.3 million newly arrived cases of cancer and 10 

million cancer deaths from cancer are projected worldwide in 

2020 [1]. Patients living in less affluent areas have lower 

cancer survival than patients living in more affluent areas, 

according to studies from multiple countries and cancer sites 

[2]. After implementing social distance' policies in the 

Netherlands, the incidence of cancers other than skin cancer 

decreased by 25%, and skin cancers (excluding basal cell 

carcinoma) decreased by 60% [3]. The tumor 

microenvironment (TME) is a complex environment in 

which various neoplastic cell types and extracellular matrix 

proteins interact to control cancer cell biology [4]. The 

Cancer Genome Atlas (TCGA) is the world's largest and 

most complete multi-omics oncology cohort, allowing 

researchers to analyze mRNA expression, DNA methylation, 

and progenitor connections in 33 cancer types 

simultaneously [5]. Ovarian cancer (OC), also known as the 
"silent killer," is the most common gynecological cancer 

killer [6]. Ovarian epithelial malignancies are mostly 

imported from the endometrial or fallopian tube epithelium, 

unlike other human malignancies, where all initial tumors 

form de novo [7]. Because of its non-toxic properties and 

high attack rate, high mortality is difficult to detect early. 

Unfortunately, 60% of OC patients are discovered at a 

late stage, with a survival rate of just 29%. The early-stage 

illness, on the other hand, has a 92 percent 5-year survival 

rate [8]. Wnt / β-catenin, Hedgehog (Hh), protein kinase B 

(PI3K / Akt), /phosphatidylinositol-3-kinase epidermal 
growth factor (EGF), and alter growth factor-T (TGF-) are 

just a few of the pathways that CSCs use to spread is under 

control [9]. The surface and function markers of various 

specific cells such CD44, CD117, CD33, CD24, the 

molecular epithelial cell synthesis (EpCAM), and 

dehydrogenase aldehyde were all employed to identify and 

test ovarian stem cells for ovarian cancer (ALDH). After 

being removed from the initial source, ovarian cancer cells 

develop into colourful spheroids, including some 

mesenchymal and immune cell components, and ultimately 

spread into the peritoneal fluid, mostly by the physical 
migration of the material to metastasis to the omentum and 

peritoneum [10]. CSCs appear to be compatible with stem 

cell pathways and self-regeneration, both of which are 

involved in tumorigenesis. Cancer treatment can thus be 

accomplished by studying cancer cell self-regenerative 

pathways [11].  

CSCs in Ovarian Cancer: 

CSCs are cells that cause tumors to form (TICs). Ovarian 
carcinoma is one example of a CSC-driven illness. A group 

of scientists with a five-meter diameter identified VSEL 

(very tiny embryonic-like) stem cells, which stay latent in 

http://ijbttjournal.org/archives/ijbtt-v11i2p603
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adult human organs and tissue [24][25]. The homeobox 

(HOXD9) genes, SOX17 and  forkhead box (FOXQ1, 

FOXL2) which govern proliferation, cell division, 

differentiation, the creation of body axis, and embryonic 

development, all have a role in ovarian cancer, according to 
the findings [26]. Bapat et al. were the first to disclose the 

presence of CSCs or progenitor cells in Ovarian Cancer 

patient ascites over a decade ago, demonstrating that cells 

from a single clone may appear identical to original tumor 

cells [27]. SFRP1, NANOG, LHX9, ALDH1A2, and 

ALDH1A1 are among the stem cell markers detected in both 

Ovarian surface epithelium (OSE) and the fallopian tube 

epithelium (FTE) [28]. Peritoneal ascites are present in the 

majority of patients, which may provide an optimal 

environment for OCSC survival and enrichment [29]. 

Aldehyde dehydrogenase isoform 1 (ALDH1A1) cells,  

CD44, CD133,  CD24, CD117 (c-kit) and have been shown 
to include OCSCs. These markers might be used to 

distinguish stem cells from the remainder of the cancer cells 

[29][30][31][32]. CD44 is a transmembrane glycoprotein 

found on the cell surface that serves as a receptor for a 

variety of signals from the surrounding environment. This 

transcription factor controls gene expression in the regions of 

cellular differentiation and adherence to the extracellular 

matrix. This CSC surface marker is often used to detect 

CSCs in OC and other malignancies. It may be used alone or 

in conjunction with other possible markers to detect CSCs in 

OC and other malignancies [33][34][35]. According to Gil 
Mor and colleagues, the conventional CD44 variation, which 

was previously characterized as being critical in the 

attachment of free-floating cancer cells or cell clusters to the 

peritoneum, is one of the most significant prospective surface 

antigens for identifying Stemness in ovarian cancer 

[36][37][38]. CD117 is a receptor tyrosine kinase(RTK) that 

participates in a number of cell signaling pathways. CD117 

overactivation has been identified in a variety of 
malignancies. In OC, high CD 117 expression has been 

linked to a low disease-free survival rate [39][40]. According 

to the research, CD24 is a small cell surface marker that has 

been discovered to be highly expressed in a variety of 

malignancies, including about 70% of initial tumors retrieved 

from 174 OC patients [41]. Malignant tumors often produce 

CD133, a glycosylated transmembrane protein that has been 

proven to be predictive of OC. Through a variety of signaling 

pathways, CD133 has the capacity to influence cancer 

stemness and metastasis [28]. A relatively small proportion 

of CD133+ cells were detected occasionally in the A2780V 

cell line. According to the current study, this cell surface 
molecule is an excellent predictor of ovarian cancer-initiating 

(stem) cells, either alone or through the conjunction with the 

ALDH1A1+ phenotype [42]. ALDH is a family of enzymes 

with 19 distinct isoforms that are responsible for converting 

aldehyde substrates to its carboxylic acids in the body 

[43][44]. ALDH+ cells displayed improved DNA repair and 

a higher number of drug efflux transporters in OC, showing 

that ALDH is involved in modifying drug resistance. 

Because ALDH+ cells display a wide range of CSC features, 

the amount of ALDH has been utilized to characterize 

OCSCs in a number of studies, including this one 
[45][46][47][48]. According to these studies, cells with the 

CD133+/ALDH1A1+ marker combination were 

considerably more likely to  

 

Table 1: Gene involves in ovarian cancer 

Transcription Factor/ Gene Location Mechanism References 

HOXD9 2q31.1 over-expression [12]  

TP53 17p13.1 gain-of-function (GOF) mutations [13] 

BRCA1/2 17q21/ 

13q12.3 

germline BRCA mutation [14] 

BRIP1 17q22 frameshift mutation [15][16]  

 p53  17p13.1 over-expression [17] 

RAD51D 

 

17q12 frameshifting insertions or deletions [18][19] 

PIK3CA  

 

3q26.3 Gene amplification [20][21] 

KRAS 12p12 Gene amplification [22][23] 

 

 

commence sphere formation than cells with other surface 

characteristics. Silva et al. found that ALDH1A1+/CD133+ 

cells had more angiogenic capacity than the bulk of tumor 

cells. The presence of these cells in primary tumor specimens 

was associated with worse disease-free and overall survival 

in ovarian cancer [49].  

 

Isolation and enrichment of CSCs: 

Different approaches can be used to identify and isolate 

CSCs. CSCs can be isolated from solid tumours using 

MACS and FACS, which are depending on the cell surface 

or intracellular markers [50]. MACS is a low-cost 

monoparameter isolation approach, while FACS is a high-

cost multiparameter isolation approach [51]. MACS is 

https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/ng/journal/v43/n9/abs/ng.893.html&casa_token=Gklq3wzlzbQAAAAA:TB77BsxUpN5vmiRjyfX7wBXcXxFvBGcz2-JzlPcbHmvBTBNMj6Z0j8MglLcMNL0tgeeIPIZHtdKYY8vpPWI
https://cancerres.aacrjournals.org/content/64/21/7678.short
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similar to FACS in that it selects cell populations by using 

surface markers, but it takes less time and requires less 

expensive equipment [52].  CSCs are widely isolated from 

heterogeneous tumor cells using cell surface marker-based 

separation approaches [53]. Several markers were utilized to 
isolate CSCs from ovarian cell lines, including ALDH1/2, 

LGR5, CD133, LY6A, EpCAM, CD44, CD133, CD24, 

CD34, CD117, CDH1 and MyD88 

[54][55][29][56][57][58][59][60][61][62]. CD44 is a well-

known surface marker of SCs that promotes tumor growth 

and oncogenesis. In OC, high CD44 expression is linked to 

metastasis, recurrence, chemoresistance, and survival rate, 

while its reduction inhibits tumor cell proliferation and 

metastasis and reverses chemoresistance [63]. CD133 is a 

cell surface marker which can be used to distinguish CSCs 

from breast cancer, prostate cancer,  glioblastoma, liver 

cancer cells, and colorectal cancer [53]. Glioma stem cells 
(GSCs) that were positive for the CD133 antigen were shown 

to be tumorigenic,  

according to the research. Human lung cancer cell lines 

CD133+ and CD133-, as well as CD133- mouse glioma cell 

lines, were oncogenic, capable of colonization and self-

renewal, and had the tumorigenic potential [64][65]. 

According to the results of another research, CD105 positive 
cells extracted through using MACS methodology 

demonstrated higher CSC features than CD105 +ve cells 

extracted using the MACS methodology. CXCR4 +ve cells 

were shown to have more capability for sphere formation and 

carcinogenesis when compared to CXCR4 -ve cells [66][67]. 

Another methodology for differentiating CSCs is the 

Aldefluor method, which is based on the enzyme aldehyde 

dehydrogenase and may be used to detect CSCs (ALDH). It 

is possible to image single cells in monolayer cultures with 

this technique, which may be useful in some situations. 

When compared to techniques that target the cell surface, this 

technique is more stable and has a lower specificity  [68]. 
ALDHs are enzymes that help convert aldehydes into 

carboxylic acids like retinoic acid. Several lines of in vitro 

and clinical evidence point to a link among high ALDH 

expression and CSC-like characteristics in various cancers. A 

fraction of ALDH-high prostate cancer cells recovered by the 

Aldefluor test revealed increased migratory capacity and 

clonogenic capacity when comparing to ALDH-low prostate 

cancer cells [69].  The ALDEFLUOR, which is based on the 

degree of aldehyde dehydrogenase 1(ALDH1) enzyme 

activity, was utilized to identify cells from six ovarian cell 

lines and nine OC patients with increased sphere-formation 
potential, tumorigenicity, and invasiveness [70]. When 

ALDH+CD133+ cells were put into xenograft mice, it was 

shown that they were more capable of forming bigger and 

quicker tumors, as well as constructing three-dimensional 

spheres, than their negative counterparts in ovarian tumors 

[42]. Another technique to identify CSCs is to look for cell 

populations(SP) that have the capacity to pump out a drug 

(Hoechst33342 or Dye Cycle Violet) and have ABC 

transporter expression using Hoechst 33342 dye-staining 

[71][72][73][74]. The Hoechst 33342 dye is kept out by a 

transporter in this approach using SP cells. 

Chemotherapeutic drugs are expelled from the body as a 

consequence of this mechanism, which leads to 
chemotherapy resistance [71]. This procedure may also be 

used to identify CSCs without the use of a cell surface 

marker; however, it has lesser specificity, purity and has 

deleterious effects on isolated cells when compared to 

conventional techniques. In contrast, to control cells, isolated 

SP cells from the SK-OV-3 ovarian cell line displayed large 

quantities of CSC markers such as ABCG2, ATP-binding 

cassette, CD44, and nestin. These cells, despite their small 

size, have a strong capacity for self-renewal and 

multiplication [75]. 

 

Cancer stem cells and Stemness: 

Ovarian cancer due to often peritoneal serous fluid, spheroids 

that remain cells can both live and multiply in a non-adherent 

status [76]. The study suggested that up to 70% of cases of 

ovarian cancer present with massive malignant ascites [77]. 

Passivity, differentiation, EMT, and plasticity are all aspects 

of stem molecular biology that are governed by a variety of 

topics, stem cells,  cell divisions, extracellular matrix, host 
cells, and choice factors [78]. Exessive EMT activation is 

also responsible for cancer metastasis. Study revels that there 

is a possible link between EMT and the gain of stem cell 

properties in normal and cancer cell populations [79]. In 

vivo, These CSCs constitute a subpopulation of neoplastic 

cells that are able to divide by maintaining their Stemness 

with self-regenerating properties that aid tumor development 

and heterogeneity throughout tumor recurrence [80][81][82]. 

Due to their capacity to self-renew and specialize into 

diverse lineages of cancer cells, drug resistance in CSCs 

causes tumor recurrence after first chemotherapeutic therapy 

[83][84]. These systems were proven to have unique 
metabolic capabilities, so highly glycolytic functions in 

comparison to differentiated tumor cells [85][86][87]. This 

extraordinary metabolic behavior can result in resistance for 

the drug. Rodent ovarian CSCs have a better glycolysis rate 

in comparison to their parent cells, which can be related to 

chemotherapeutic resistance [88]. The ovarian CSCs,  

CD117 and CD44 reveal a excessive level of mitochondrial 

ROS, which suggests that the mitochondrial, a part of the 

respiration chain, is specially used to keep cells in a state of 

food stress and starvation condition [89].  These systems 

have many mechanisms of drug resistance, along with 
aldehyde dehydrogenase, ABC transporters, signaling 

pathways and DNA repair [90]. Hoechst 3342, a DNA 

binding dye, is a way for obtaining specific information 

related to the ABC function, which is located on the right 

side. Breast cancer resistance protein (ABCG2) and P-

glycoprotein (MDR1) have a role in cancer prevention and 

chemotherapy resistance [91][92][93][94]. Although 

doxorubicin is out of the query like ABCB1 and ABCG2, 
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Paclitaxel only needs to be pumped out of MDR1 [95][91]. 

Therefore, the higher expression of those carriers is visible to 

be a multi-faceted data. ABCB1 and ABCG2 were detected 

in high concentrations in cancer stem cells from ovarian 

malignancies and breast respectively [96][97]. In ovarian 
tissue surgery, high amounts of ABCC3/MRP3, ABCB5 and 

ABCA1 were noted, and the greatest levels of 

ABCG2/BCRP, ABCB1/MDR1/P-GP, and ABCA1 were 

indicated in ovarian CSCs [97][98][99]. Because of the 

relationship between the ABC transporter, the kind of 

chemotherapy resistance, and the causes of resistance, it is 

necessary to pick a specific suppressor [100]. Another 

significant mechanism of CSC resistance is aldehyde 

dehydrogenase (ALDH), which is produced by the liver. 

Various human isoforms, ALDH, that's expressed 

particularly in the kidneys and liver [101]. ALDH work 

experience is taken into consideration as a prognostic marker 
of diverse kinds of cancer, which include lung cancer, breast 

cancer, pancreatic cancer, bowel cancer, and OC 

[102][103][104][105]. When lithium is utilized as an ALDH 

inhibitor, it has been discovered that ALDH has a 

cyclophosphamide resistance function that is compatible 

with the cyclophosphamide resistance function of the 

cyclophosphamide leukemic cell line L1210 [106]. 

Resistance to cyclophosphamide mediated by ALDH was 

also reported in medulloblastoma [107]. ALDH also deals 

with the Csc phenotype, formation of colonies, expression of 

self renewal markers and creation of tumors, and the EMT 
methodology of ovary cancer [108]. Therefore, inhibition of 

ALDH can play an crucial role in elevating the system's 

cognizance of the truth about narcotic drugs. It has been 

reported that ALDH1A1- siRNA sensitized ESA + CD44+ 

colon CSCs with high ALDH expression to 

cyclophosphamid [109]. The third mechanism that is 

responsible for the chemical resistance of CSCs is the 

participation of the family of proteins b-cell lymphoma-2 

(BCL-2). This protein family plays an essential part 

instability between development and hematopoiesis, cell 

death, neurogenesis, and embryogenesis [110]. Many 

neoplastic and hematopoietic cells display the carcinogenic 
capability of the BCL-2 Protein [111][112].  According to 

the authors, high levels of BCL-XL and BCL-2 expression in 

leukemic CD34+ cells, as well as CD44+/CD24+/low levels 

of breast CSCs, may be present in leukemic CD34+ cells 

[113][114]. In order for Csc to survive and fight 

chemotherapy, an excessive level of BCL-2 protein 

production via signaling pathways is required. It was 

discovered that the expression of BCL-2 was accompanied 

with an increase in the level of sensitivity to oxaliplatin and 

FU-5 [90].  Already expressed Bcl-xl is seen in the majority 

of cases of recurrent chemoresistant ovarian tumors, and this 
is associated with a shorter disease-free time [115][116]. 

Inhibition of Bcl-xL boosts ovarian cancer cells' 

chemosensitivity in pre-clinical trials, and findings suggest 

that the most promising treatment approach to recurring 

ovarian epithelial malignancies is to block anti-apoptotic 

proteins [116][117]. Signal-like pathway of WNT /β-catenin 

and NOTCH also have chemoresistant procedures which are 

involved in the systems [118][119][120][121][122]. The link 

between the WNT pathway and cisplatin resistance in OV6+ 

– reduced systems are identified [123]. The NOTCH 
signaling system plays a critical role in the formation and 

self-renovation of tumors, angiogenesis, epithelial-

mesenchymal transition (EMT) [124][125][126][127]. 

Knockdown of the Notch 1 receptor or the usage of a 

gamma-secretase inhibitor has been proven to bring about the 

sensitivity of oxaliplatin to colon most cancers cells as well 

[128]. In the biology of CSCs and platinum resistance, 

increased notch3 expression is significant. A gamma-

secretase inhibitor (GSI) eliminates Csc by enhancing its 

sensitivity to the necessary platinum. Combination treatment, 

which involves tumor excision and SSC-centric treatment, is 

more successful than secular treatment in general [129]. 
 

OCSCs signaling pathways and targeted treatments:   

Due to the importance of ovarian CSCs in drug resistance 

and recurrence, their elimination might be seen as an 

efficient therapeutic strategy for the resistance and 

recurrence of ovaries to cancer [130]. However, there are a 

variety of different options available, including using 

signaling channels, using surface markers as precise targets, 

and briefly discussing some other ways for eradicating the 

CSC. 

Signaling pathway and targeted therapy: 

In CSCs, one of the greatest treatment strategies is to target 

signaling pathways. However, Hedgehog (SHH), WNT, 

PI3K/PTEN, SONIC, NF-kB, and NOTCH are only a few of 

the important signaling pathways linked to stem cell traits. 

As a result, dysregulation of these signaling pathways may 

be linked to the survival of CSCs [131].  

Wnt signaling:  

The classical WNT signaling pathway is considered to be an 

important and protective mechanism throughout 

development and tissue homeostasis [132]. Dysregulation of 

the WNT pathway inhibits colonic crypt stem cell 

proliferation and differentiation while concurrently 

enhancing the expression of target genes such cyclin D and 

Cellular Myelocytomatosis (c-myc), leading in the formation 

of a cancer stem cell  phenotype [133]. Furthermore, in 
CD44+/CD133+ colon CSCs, a substantial association 

between the WNT pathway and CSC characteristics was 

discovered [134]. This route is also linked to 

chemoresistance in ovarian cancer, according to the research 

[135]. The WNT pathway is used to maintain stem cells in 

the ovarian epithelium and to activate R-spondin through 

leucine-rich repeat-containing receptor. In ovarian cancer, 

the presence and chemoresistance of LGR6 and LGR5 in 

epithelial stem cells is essential [136]. WNT signaling 

inhibition may be utilized to destroy CSCs, which might be 

an excellent way to treat cancer [137]. PRI-724 blocks the 
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WNT pathway in colon cancer cells by binding to the CREB 

protein, resulting in the development of apoptosis in the 

cancer cells [138].  

Pathway of sonic Hedgehog signaling:  

The Sonic hedgehog pathway is part of several molecular 

and cellular mechanisms, including embryogenesis, 

development, and homeostasis of tissue in adults [139][134]. 

The SHH pathway has been implicated in the CSC 

maintenance in a range of cancers, including CML, breast 

cancer, lung cancer, pancreatic cancer, glioblastoma, and 

myeloma [140][141][142][143][144][145]. In myeloma 

CSCs, there has been an increase in the expression of SMO 

and Gli1 [146]. Because the SHH pathway is critical for CSC 
self-implantation and other properties, inhibiting it may 

cause CSC stemness to be disrupted via the differentiation of 

these cells [147][148]. Cyclopamine, when used as a 

Hedgehog antagonist in ovarian cell lines such as SKOV3, 

OV90, EX2, and TOV112D, has been demonstrated to 

diminish spheroid formation in a variety of ovarian cell lines 

[149]. Vismodegib is a Sonic hedgehog antagonist currently 

in phase 1 of a clinical trial for the treatment of metastatic 

basal tumor cells. It targets SMO and is being tested against 

these cells [147][148]. Sonidegib is another SMO antagonist 

that has been authorized by the FDA for individuals with 
advanced Basal cell carcinoma [150]. The 5E1 antibody 

blocks all three ligands of the  hedgehog and Protein patched 

homolog proteins from joining together [151][152].  

Notch signaling pathway: 

The NOTCH canonical signaling system is one of the most 

important evolutionary routes throughout the growth and 

adult tissue homeostasis [153][154]. Dysregulation of 

NOTCH signalization in glioblastoma, pancreatic cancer, and 
breast cancer is critical to maintain and survive CSCs 

Through the NOTCH signaling pathway, Fascin, an actin-

binding protein, controls breast CSCs. As a consequence, 

Fascin knockdown in breast cancer stem cell-like cells 

lowers pluripotent gene expression and sphere formation 

[155]. Signaling components like NOTCH is  HES1, JAG1, 

NOTCH 1, JAG2 and NOTCH3  were shown to be 

overexpressed in Pancreatic Cancer Stem Cells, and γ-

Secretase inhibitors (GSI) inhibited the formation of CSCs 

and tumorspheres. NOTCH suppression by HES1 

knockdown lowered tumorsphere development in Pancreatic 

Cancer Stem Cells, but NOTCH activation by the Delta/ 
Lag-2/Serrate peptide boosted tumorsphere development in 

pancreatic CSCs [156]. Targeting the NOTCH signaling 

pathway using a combination of GSI and Cisplatin improved 

chemosensitivity and reduced the amount of CSCs [129]. 

Using Jagged1, another group was able to increase Docetaxel 

susceptibility while simultaneously shrinking tumor size in 

Taxane-resistant cells [46]. The interaction of the γ-Secretase 

antagonist and cediranib maleate were studied in a Phase 1 

clinical trial. A phase 1 clinical study for severe ovarian 

OC patients was also employed for the γ-secretase inhibitor 

[157]. Another method of suppressing NOTCH is to use 

monoclonal antibodies against Delta-like lignad4, which 

limit ligand binding. Enoticumab is an anti-DLL4 antibody 

used to treat ovarian tumors that have DLL4 overexpression. 

Demcizumab, an anti-DLL4 antibody, has also been utilized 

in the treatment of advanced OC [158].  

Eradication of Cancer Stem Cell using surface markers:  

Several techniques may be used to target Cancer Stem Cell 

surface markers like CD133, CD24, CD117, CD44 [159]. 

Hyaluronic acid-paclitaxel (HA-TXL) was used to target 

CD44+ SKOV3 cell lines, resulting in reduced tumor size 

[160]. A further research focused on CD133+ OVCAR5-Luc 

cells, which concluded in a marked reduction in tumor 

formation [161]. In nude mice, CD24 suppression lowered 
cell viability by triggering cell death and inhibited tumor 

formation in the SKOV3 cell line [162]. The CD117 surface 

marker has been linked to drug resistance in ovarian cancer 

[163]. CD117 enhances the Wnt/β catenin-ABCG2 pathway 

for Cisplatin/Paclitaxel resistance. Imatinib Mesylate has 

been used to treat a range of tumor types, including 

chemoresistant ovarian tumors [164][165]. The development 

of CD44+ and CD117+ chemoresistant ovarian CSCs was 

also suppressed by Paclitaxel and Salinomycin treatments 

[166]. In addition, Metformin reduced the number of 

ALDH+ CSCs and angiogenesis, according to another study 

[167]. Clostridium perfringens Enterotoxin (CPE) may also 
be employed in a Xenograft mice model to eradicate 

chemoresistant CD44+ ovarian CSCs [168].  

Conclusion 

Ovarian CSC elimination is critical for successful ovarian 

cancer therapy, since CSCs are the driving force behind 

disease progression, presentation, and recurrence despite 

conventional therapy. CSC indicators, CSC signalling 

pathways involved in renewal, and CSC niche are three 

possible targets for ovarian CSC eradication. 

Because ovarian cancer is so varied, there are likely to be 

additional markers identifying distinct subpopulations of 

ovarian CSCs, as well as a variety of signalling pathways 

involved in CSC renewal. Cancer cell lines are useful for 

discovering CSC specific markers and signaling pathways, as 

well as studying the ovarian CSC microenvironment, 

however in vitro tumor formation studies could be improved 
by examining ovarian cancer patient tumor tissue in vivo. 

The expression, influence, and inhibition of selected ovarian 

CSC markers, signalling pathways, and factors from the CSC 

microenvironment should then be tested in clinical practice, 

where their expression, influence, and inhibition should be 

correlated not only with disease outcome, but also with their 

influence on chemoresistance. The study of CSC 

characteristics and their microenvironment characteristics in 

vitro and in vivo may lead to new treatment regimens for 

ovarian cancer eradication and recurrence prevention. 
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